Optimal Deployment of Sensor Nodes Based on Performance Surface of Underwater Acoustic Communication
نویسندگان
چکیده
The underwater acoustic sensor network (UWASN) is a system that exchanges data between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic communication technique to exchange data. Therefore, it is important to design a robust system that will function even in severely fluctuating underwater communication conditions, along with variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment positions of underwater sensor nodes is proposed. The algorithm uses the communication performance surface, which is a map showing the underwater acoustic communication performance of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an optimization technique to find the optimal deployment positions of the sensor nodes, using the performance surface information to estimate the communication radii of the sensor nodes in each generation. The algorithm is evaluated by comparing simulation results between two different seasons (summer and winter) for an area located off the eastern coast of Korea as the selected targeted area.
منابع مشابه
A Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملEffect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band
This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...
متن کاملSelf-deployment of sensors for maximized coverage in underwater acoustic sensor networks
While self-deployment/reconfiguration of terrestrial wireless sensor networks (WSNs) has been studied extensively, such selforganization has just started to receive attention for Underwater Acoustic Sensor Networks (UWSNs). Particularly, self-deployment of sensor nodes in UWSNs is challenging due to certain characteristics of UWSNs such as three dimensional (3-D) environment, restrictions on no...
متن کاملThree-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks
Underwater sensor networks find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation, and tactical surveillance. In this paper, deployment strategies for two-dimensional and three-dimensional communication architectures for underwater acoustic sensor networks are proposed, and a mathematical deployment analysis for b...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017